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SUPPLEMENTARY INFORMATION FOR A MULTIROBOT PERSON SEARCH SYSTEM FOR FINDING MULTIPLE DYNAMIC USERS IN 

HUMAN-CENTERED ENVIRONMENTS 
 

Sharaf C. Mohamed, Angus Fung, and Goldie Nejat, Member, IEEE 

A. EXAMPLE SEARCH SCENARIOS 

Figure A represents larger scenario images of our example 

applications, Fig.1, for which our 2-MRPSS method can be 

applied. Namely, a floor in: a long-term care home (Fig. A1 

(a)); a hospital (Fig. A1 (b)); and an office building (Fig. A1 

(c)).  

B. LIST OF SYMBOLS 

1) Target Users 

𝑈′   set of all target users 

𝑍   total number of target users  

𝑈𝑧
′    𝑧𝑡ℎ target user 

2) Regions 

𝑅 set of all regions 

𝐼 total number of regions  

𝑅𝑖   𝑖𝑡ℎ region  

𝑅𝑖′   𝑖′𝑡ℎ
 region  

𝑡𝑖
𝑖′

  travel time between 𝑅𝑖  and 𝑅𝑖′  

𝛽𝑖  number of cells in 𝑅𝑖  

 

 

 

 

 

 

 

 

 

 

3) Dataset 

𝐷𝑧  dataset containing observations of the daily 

location patterns for 𝑈𝑧
′  

𝑌 number of observation days 

𝜖𝑦 𝑦𝑡ℎ  observation day 

𝑑𝑧,𝑖,𝑦 segment of time 𝑈𝑧
′  occupied 𝑅𝑖  during 𝜖𝑦 in 

the dataset 𝐷𝑧 

4) Time Periods 
𝑇 set of all time periods 

Ω total number of time periods 

𝑇𝜔 𝜔𝑡ℎ time period 

𝑇𝑗  𝑗𝑡ℎ  time period 

𝑇𝑘  𝑘𝑡ℎ time period 

Target User 

Target User 

Target User 

Target User 

Target User 

Robot 

Robot 

Robot 

Robot 

Robot 

 (a) (b) (c) 

Fig. A1. Examples of typical scenarios of a floor in a: (a) long-term care home, (b) hospital, and (c) office building. Robots are orange, target people are cyan. 
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𝑡𝑝𝑒𝑟𝑖𝑜𝑑  duration of a time period 

ℙ power set of all subsets of time periods 

Λ number of subsets in ℙ 

𝕡λ 𝜆𝑡ℎ  subset in ℙ 

𝑇𝑗,𝑘 time window between 𝑇𝑗  and 𝑇𝑘  

5) Robots 
ℝ set of all robots 

𝐵 total number of robots 

ℝ𝑏 𝑏𝑡ℎ robot 

𝑅0
(𝑏)

 initial region of ℝ𝑏  

𝑅𝜔,0
(𝑏)

 initial region of ℝ𝑏  during 𝑇𝜔 

𝑎𝑖,𝜔,𝑡  robot action to search 𝑅𝑖  during 𝑇𝜔 for a 

duration of t 
𝑡𝑚𝑜𝑣𝑒  average time for a robot to move between 

regions 

6) Search Query 

𝑆   search query 

 

 

𝑡𝑠𝑡𝑎𝑟𝑡 start time of the search 

𝑡𝑒𝑛𝑑  end time of the search 

𝑡𝑝𝑙𝑎𝑛  duration of time allocated to planning 

7) Search Plan 

𝑇𝑃 team plan 

𝑎𝑖,𝜔
∗  team action for searching 𝑅𝑖  during 𝑇𝜔, the 

asterisk indicates the action belongs to the 

team 

𝑡𝑢𝑛𝑖𝑡 discrete time increment for search actions 

𝑆𝑃𝜔
(𝑏)

 search plan for ℝ𝑏  during 𝑇𝜔 

𝑎𝜔,ℎ
(𝑏)

 ℎ𝑡ℎ  search action of  𝑆𝑃𝜔
(𝑏)

 

𝑅𝜔,ℎ
(𝑏)

 ℎ𝑡ℎ  search region of  𝑆𝑃𝜔
(𝑏)

 

𝑡𝜔,ℎ
(𝑏)

 ℎ𝑡ℎ  search duration of  𝑆𝑃𝜔
(𝑏)

 

𝕊𝑖,𝜔 set of robot actions in 𝑇𝑃 searching 𝑅𝑖  

during 𝑇𝜔 

8) Unallocated Actions 

𝑈𝐴 unallocated team search actions 

𝑈𝐴𝜔 unallocated team search actions during 𝑇𝜔  

𝑈𝐴𝑖,𝜔 unallocated team search actions for 𝑅𝑖  

during 𝑇𝜔  

9) Min-flow graph 

𝐺𝜔  minimum flow graph for 𝑇𝜔  

𝑄𝜔  time elapsed in 𝑇𝜔  

𝑁𝑄𝜔

𝑖,𝜔 decision node for the sequential min-flow 

graph to select the search duration of 𝑅𝑖  in 

𝑇𝜔 given that 𝑄𝜔  time elapsed while 

searching 𝑅1 to 𝑅𝑖−1 

𝐸
𝑡(𝑎𝑖,𝜔

∗ )
𝑖,𝜔  edge for the sequential min-flow graph 

corresponding to the decision to search 𝑅𝑖  

for a duration of 𝑡(𝑎𝑖,𝜔
∗ ) during 𝑇𝜔 

10) Clusters 

𝐹𝐶𝜔 set of fuzzy clusters in 𝑇𝜔 

𝐹 number of fuzzy clusters in 𝐹𝐶𝜔 

𝐹𝐶𝜔,𝑓 𝑓𝑡ℎ fuzzy cluster in 𝐹𝐶𝜔 

𝐹𝐶𝜔,𝑓′  𝑓′𝑡ℎ
 fuzzy cluster in 𝐹𝐶𝜔 

𝐶𝑇𝑓
𝑓′

 distance between clusters 𝐹𝐶𝜔,𝑓  and 𝐹𝐶𝜔,𝑓′ 

ℝ𝜔,𝑓 robot assigned to 𝐹𝐶𝜔,𝑓  

𝜌𝑖,𝜔,𝑓 ownership of cluster 𝐹𝐶𝜔.𝑓 over action 𝑎𝑖,𝜔
∗   

𝜌𝑖,𝜔
+  amount of ownership over 𝑎𝑖,𝜔 

∗  transferred 

𝜌𝑖,𝜔,𝑓
+  ownership of cluster 𝐹𝐶𝜔,𝑓 over action 𝑎𝑖,𝜔 

∗  

after a transfer 

𝐹𝐶̅̅̅̅
𝜔 highest cost fuzzy cluster in 𝐹𝐶𝜔 

𝐹𝐶𝜔
̇  fuzzy cluster closest to 𝐹𝐶̅̅̅̅

𝜔 in 𝐹𝐶𝜔 

𝐹𝑆 far set 

𝐶𝑆 close set 

a�̃� action in 𝐹𝐶𝜔,𝑓 closest to 𝐶𝑆 

𝐹𝐶�̃� fuzzy clusters in the order they are added to 

𝐶𝑆  

𝐹𝐶𝜔,�̃� 𝑓𝑡ℎ fuzzy cluster in 𝐹𝐶�̃� 

Ψ�̃�  cost of ordered cluster set 𝐹𝐶�̃� 

Ψ𝜔,�̃� cost of cluster 𝐹𝐶𝜔,�̃� 

11) Cluster Plan 

𝐶𝑃𝜔,𝑓 cluster plan 

𝑀𝑓
𝐶𝑃  number of actions in 𝐶𝑃𝜔,𝑓 

𝑎𝜔,𝑔
(𝑓),𝐶𝑃

 𝑔𝑡ℎ action in 𝐶𝑃𝜔,𝑓 

𝑅𝑔
(𝑓),𝐶𝑃

 𝑔𝑡ℎ region in 𝐶𝑃𝜔,𝑓  

12) Local Search 

𝑡𝑐𝑒𝑙𝑙  duration of time for a robot to search a cell 

𝜁𝑖,𝜔
(𝑏)

 number of cells for ℝ𝑏 to search in 𝑅𝑖 during 

𝑇𝜔 

𝛾𝑖,𝜔 occurrence of a search in 𝑅𝑖  during 𝑇𝜔 

𝜃𝑧
𝑈𝐴 occurrence of the team finding 𝑈𝑧

′  when 

performing actions in 𝑈𝐴 

𝜃𝑧,𝑖
𝑈𝐴 occurrence of the team finding 𝑈𝑧

′  in 𝑅𝑖  

when performing actions in 𝑈𝐴 

𝜙𝑧,𝑖,𝑦
𝑈𝐴  occurrence of the team finding 𝑈𝑧

′  in 𝑅𝑖  

when performing actions in 𝑈𝐴 based on 

𝑑𝑧,𝑖,𝑦   

𝜙𝑧,𝑖,𝑦,𝜔
𝑈𝐴  occurrence of the team finding 𝑈𝑧

′  in 𝑅𝑖  

during 𝑇𝜔 performing actions in 𝑈𝐴 based 

on 𝑑𝑧,𝑖,𝑦  

𝜉𝑧,𝑖,𝑦,𝜔
𝑈𝐴  the expected time during the search of 𝑅𝑖  in 

𝑇𝜔 in which 𝑈𝑧
′  is in 𝑅𝑖  based on 𝑑𝑧,𝑖,𝑦 
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13) Functions 

𝑃(𝑥) probability of occurrence 𝑥 

𝑃𝑧(𝑥) probability of occurrence 𝑥 for 𝑈𝑧
′  

𝕊𝜔(𝑥) set of robot-cluster pairs with cost below 𝑥 

𝑡(𝑥) duration of 𝑥 

𝑊(𝑥) reward acquired by 𝑥 

Ψ(𝑥) cost of 𝑥 

Ψ+(𝑥) cost of 𝑥 after transfer 

|𝑥| cardinality of 𝑥 

C. USER MODEL 

The user location model is extended from [21], in which it 

was presented for a single robot. Prior to searching the 

environment, the robot team acquires data on users for 𝑌 days. 

The dataset for each user, 𝐷𝑧 =

{(𝑑𝑧,1,1, … , 𝑑𝑧,1,𝑌), … , (𝑑𝑧,𝐼,1, … , 𝑑𝑧,𝐼,𝑌)}, contains observations 

of the location patterns for 𝑈𝑧
′ . Each observation 𝑑𝑧,𝑖,𝑦 indicates 

the time segments that 𝑈𝑧
′  occupies 𝑅𝑖 on observation day 𝜖𝑦.  

During a search, user data is used to predict their locations. 

A user has an equal probability of repeating any day, 𝑃𝑧(𝜖𝑦): 

 𝑃𝑧(𝜖𝑦) =
1

𝑌
, ∀𝑦 ∈ [1, 𝑌]. (C1) 

Each observation that occurs during 𝜖𝑦 has a probability of 

occurring, 𝑃(𝑑𝑧,𝑖,𝑦), equal to the probability of 𝜖𝑦 occurring: 

 𝑃(𝑑𝑧,𝑖,𝑦) = 𝑃𝑧(𝜖𝑦), ∀𝑧 ∈ [1, 𝑍], 𝑖 ∈ [1, 𝐼]. (C2) 

Given an observation 𝑑𝑧,𝑖′,𝑦′  occurs, then all observations from 

that day occur and all observations from other days do not: 

 𝑃(𝑑𝑧,𝑖,𝑦|𝑑𝑧,𝑖′,𝑦′) = {
0, if 𝑦′ ≠ 𝑦

1, if 𝑦′ = 𝑦
, ∀𝑖 ∈ [1, 𝐼]. (C3) 

As each day is mutually exclusive, we obtain the user’s unique 

location patterns demonstrated during the observation day.  

In the user location model, we assume the probability of 𝑈𝑧
′  

occupying 𝑅𝑖 depends on if 𝑈𝑧
′  was previously in 𝑅𝑖, but is 

independent of other regions 𝑅𝑖′. By capturing the dependence 

within a region, the location model can determine when a user 

will revisit a region. Furthermore, the number of probabilities 

needed by the model is reduced from (
𝑡𝑝𝑒𝑟𝑖𝑜𝑑

𝑡𝑢𝑛𝑖𝑡 )
𝐼Ω

 to (
𝑡𝑝𝑒𝑟𝑖𝑜𝑑

𝑡𝑢𝑛𝑖𝑡 )
Ω

; 

e.g., for 𝐼 = 30 regions, Ω = 3 time periods, 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 = 900𝑠, 

and 𝑡𝑢𝑛𝑖𝑡 = 15𝑠, the total number of probabilities to compute 

is reduced from 1.1 × 10160 to 2.2 × 105. This location model 

is used to generate rewards for robot search actions that can 

effectively reason about when to search a region and if needed 

to search the region multiple times during a search time frame. 

Empirical analysis verified that the use of conditional 

probabilities within the user location model improved the 

search performance with respect to the mean success rate (the 

ratio of users found over the target users) compared to methods 

that assume conditional independence in their user model.  

Experiments were also conducted to demonstrate the 

robustness of the user location model by introducing the 

following forms of uncertainty [21]: 1) misalignment of user 

activities with time periods, 2) observational errors during data 

collection, 3) deviation of user behaviors from their observed 

data, 4) varying number of observation days, and 5) 

introduction of detection errors during the search. It was found 

that when uncertainty led to errors in the users’ location 

probability distributions, uncertainty forms (1)-(3) above, the 

search planner outperformed both MDP and coverage planners. 

In fact, misalignment of activities with time periods had little 

impact on the planner’s mean success rate, and the planner had 

higher mean success rates when observational errors and 

behavior deviations were less than 75%. 

D. LOCAL SEARCH 

Our 2-MRPSS presented in the paper is independent of the 

local planner used, as long as the local planner can provide 

𝑃(𝜃𝑧,𝑖
𝑈𝐴) as needed in Eqs. (8)-(11) of the paper. Herein, for 

searching a region 𝑅𝑖 in time period 𝑇𝜔 we used a two-stage 

approach where we first determined an ordered set of cells for 

the team to visit in the region and then divided the cells 

amongst the robots. For the first stage, the team selected the 

ordered cells in the region a single robot would search given the 

team search time 𝑡(𝑎𝑖,𝜔 
∗ ) using a grid-based coverage local 

search [21]. For the second stage, the selected ordered set of 

cells are divided amongst multiple robots such that each robot 

ℝ𝑏 searches 𝜁𝑖,𝜔
(𝑏)

 cells based on its assigned search duration for 

𝑅𝑖 during 𝑇𝜔, 𝑡(𝑎𝑖,𝜔 
(𝑏)

): 

 𝜁𝑖,𝜔
(𝑏)

=
𝑡(𝑎𝑖,𝜔 

(𝑏)
)

𝑡𝑐𝑒𝑙𝑙 . (D1) 

Specifically, ℝ𝑏 searches cells (𝜁𝑖,𝜔
(𝑏−1)

+ 1) to 𝜁𝑖,𝜔
(𝑏)

 in the 

ordered set of cells for the team, where 𝜁𝑖,𝜔
(0)

 is defined as 0.  

To determine 𝑃(𝜃𝑧,𝑖
𝑈𝐴) for the local search, let 𝜙𝑧,𝑖,𝑦

𝑈𝐴  represent 

the occurrence that 𝑈𝑧
′  is found in 𝑅𝑖 if the robots execute the 

actions in 𝑈𝐴 and 𝑈𝑧
′  is in 𝑅𝑖 during the time indicated by 

observation 𝑑𝑧,𝑖,𝑦 . Then, 𝜃𝑧,𝑖
𝑈𝐴 must occur if for any 𝑦 ∈ [1, 𝑌𝑖] 

the occurrence 𝜙𝑧,𝑖,𝑦
𝑈𝐴  and observation 𝑑𝑧,𝑖,𝑦 both occur: 

 𝑃(𝜃𝑧,𝑖
𝑈𝐴) = 𝑃(⋃ 𝑑𝑧,𝑖,𝑦 , 𝜙𝑧,𝑖,𝑦

𝑈𝐴𝑌𝑖
𝑦=1 ). (D2) 

The right hand side of the equation can be simplified as 

observations 𝑑𝑧,𝑖,𝑦 and 𝑑𝑧,𝑖,𝑦′, ∀𝑦 ≠ 𝑦′, are mutually exclusive: 

 𝑃(⋃ 𝑑𝑧,𝑖,𝑦 , 𝜙𝑧,𝑖,𝑦
𝑈𝐴𝑌𝑖

𝑦=1 ) = ∑ 𝑃(𝑑𝑧,𝑖,𝑦 , 𝜙𝑧,𝑖,𝑦
𝑈𝐴 )

𝑌𝑖
𝑦=1 . (D3) 

To determine 𝑃(𝑑𝑧,𝑖,𝑦 , 𝜙𝑧,𝑖,𝑦
𝑈𝐴 ), we note that 𝑑𝑧,𝑖,𝑦 is independent 

of 𝜙𝑧,𝑖,𝑦
𝑈𝐴 . Namely, the probability of an observation being 

uniformly sampled from the data set is independent of the 

search actions in 𝑈𝐴 finding the user during that observation: 

 𝑃(𝑑𝑧,𝑖,𝑦 , 𝜙𝑧,𝑖,𝑦
𝑈𝐴 , )= 𝑃(𝑑𝑧,𝑖,𝑦)𝑃(𝜙𝑧,𝑖,𝑦

𝑈𝐴 ). (D4) 

𝑃(𝑑𝑧,𝑖,𝑦) is obtained using Eq. (C2). To determine 𝑃(𝜙𝑧,𝑖,𝑦
𝑈𝐴 ), 
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we introduce 𝜙𝑧,𝑖,𝑦,𝜔
𝑈𝐴  which represents the occurrence of 𝜙𝑧,𝑖,𝑦

𝑈𝐴  

during 𝑇𝜔. 𝑈𝑧
′  is found in 𝑅𝑖 during the search if the user is 

found in 𝑅𝑖 during any time period: 

 𝑃(𝜙𝑧,𝑖,𝑦
𝑇𝑃 ) = 𝑃(⋃ 𝜙𝑧,𝑖,𝑦,𝜔

𝑈𝐴Ω
𝜔=1 ). (D5) 

Moreover, we can express the union as a series of intersections:  

𝑃(⋃ 𝜙𝑧,𝑖,𝑦,𝜔
𝑈𝐴Ω

𝜔=1 ) = ∑ Μ(𝕡𝜆)𝑃(⋂ 𝜙𝑧,𝑖,𝑦,𝜔
𝑈𝐴

𝑇𝜔∈𝕡𝜆
)𝕡𝜆∈ℙ(𝑇) , (D6a) 

and 

 Μ(𝕡𝜆) = {
1,    if |𝕡𝜆| is odd

−1,   if |𝕡𝜆| is even
 . (D6b) 

𝕡𝜆 is a unique subset of 𝑇 = {𝑇1, … , 𝑇𝜔} and ℙ = {𝕡1, … , 𝕡Λ } 

is the power set of 𝑇. |𝕡𝜆| is the cardinality of 𝕡𝜆. Namely, to 

compute a union, all intersects of odd sized subsets must be 

added, and all intersect of even sized subsets must be 

subtracted. As 𝜙𝑧,𝑖,𝑦,𝜔
𝑈𝐴  and 𝜙𝑧,𝑖,𝑦,𝜔′

𝑈𝐴  are independent ∀𝜔 ≠ 𝜔′, 

𝑃(⋂ 𝜙𝑧,𝑖,𝑦,𝜔
𝑈𝐴

𝑇𝜔∈𝕡 ) can be computed as a product: 

 𝑃(⋂ 𝜙𝑧,𝑖,𝑦,𝜔
𝑈𝐴

𝑇𝜔∈𝕡 ) = ∏ 𝑃(𝜙𝑧,𝑖,𝑦,𝜔
𝑈𝐴 )𝑇𝜔∈𝕡 . (D7) 

As the user location data only indicates the region a user is 

in, and not the cell within the region, user locations across the 

cells have a uniform probability distribution. We introduce 

𝜉𝑧,𝑖,𝑦,𝜔
𝑈𝐴 , as the expected time during the search of 𝑅𝑖 in 𝑇𝜔 in 

which 𝑈𝑧
′  is in 𝑅𝑖 based on 𝑑𝑧,𝑖,𝑦. The probability of finding the 

user in region 𝑅𝑖 can then be expressed as the expected amount 

of time spent searching 𝑅𝑖 while the user is present divided by 

the time to search the entire region, denoted 𝛽𝑖: 

 𝑃(𝜙𝑧,𝑖,𝑦,𝜔
𝑈𝐴 ) =

𝜉𝑧,𝑦,𝑖,𝜔
𝑈𝐴

𝛽i
. (D8) 

As 𝑈𝐴 does not specify when a search occurs during a time 

period, each search action can start at any time, 𝜏, during the 

time period with equal probability. To determine 𝜉𝑧,𝑦,𝑖,𝜔
𝑈𝐴 , we 

integrate over all possible starting times 𝜏 for which the entire 

search action 𝑎𝑖,𝜔
∗  can be completed within 𝑇𝜔: 

 𝜉𝑧,𝑣,𝑖,𝜔
𝑈𝐴 = ∫ ∫ 𝑜𝑐𝑐𝑧,𝑖,𝑦,𝜔(𝑡)

𝑡
𝑝𝑒𝑟𝑖𝑜𝑑−𝑡(𝑎𝑖,𝜔

∗ )

0

∞

−∞
× 

 𝑟𝑒𝑐𝑡(𝑎𝑖,𝜔
∗ ),𝜔

 (𝑡 − 𝜏)𝑑τd𝑡, (D9a) 

 𝑜𝑐𝑐𝑧,𝑖,𝑦,𝜔(𝑡)  = {
1, if 𝑑𝑧,𝑖,𝑦 indicates 𝑈𝑧

′  is in 𝑅𝑖  at 𝑡

0,  otherwise                                
, (D9b) 

𝑟𝑒𝑐𝑡(𝑎𝑖,𝜔
∗ ),𝜔

 (𝑡)  = {
1, 0 ≤ 𝑡 ≤ 𝑡(𝑎𝑖,𝜔

∗ ) 

0,  otherwise           
. (D9c) 

𝑜𝑐𝑐𝑧,𝑖,𝑦,𝜔(𝑡) is a binary function which represents the time 

during 𝑇𝜔 that 𝑈𝑧
′  is in 𝑅𝑖 based on 𝑑𝑧,𝑖,𝑦, and 𝑟𝑒𝑐𝑡(𝑎𝑖,𝜔

∗ ),𝜔
 (𝑡) is 

a rectangular function which represents the duration of the 

search action 𝑎𝑖,𝜔
∗ . 

E. COMPLEXITY ANALYSIS 

 We provide the time and space complexity for the proposed 

team action selection and action allocation approach. In 

particular, for solving 1) the sequential min-flow graph, 2) 

fuzzy clustering, and 3) the overall 2-MRPSS. 

1) Sequential Min-flow Graph  

 The time complexity of solving the sequential min-flow 

graph using the Bellman-Ford algorithm is:  

 𝑂(|𝑉||𝐸|), (E1) 

where: 

 |𝑉| = 𝐼 (
𝑡𝑝𝑒𝑟𝑖𝑜𝑑

𝑡𝑢𝑛𝑖𝑡 ), (E2) 

 |𝐸| = |𝑉|(max 𝛽𝑖). (E3) 

The space complexity is: 

𝑂(|𝑉| + |𝐸|). (E4) 

2) Fuzzy Clustering  

The time complexity of the fuzzy clustering approach is: 

𝒪 (
𝑡𝑝𝑒𝑟𝑖𝑜𝑑

𝑡𝑢𝑛𝑖𝑡 𝐵2𝐼2 + 𝑙𝑜𝑔 𝐵2 ⋅ 𝐵2.5). (E5) 

It represents the summation of the time complexity of 

generating initial clusters with K-means++ 𝒪(BI); the EM 

algorithm 𝒪 (
𝑡𝑝𝑒𝑟𝑖𝑜𝑑

𝑡𝑢𝑛𝑖𝑡 𝐵2𝐼2); and assigning robots to clusters 

𝒪(log B2 ⋅ 𝐵2.5), where for the latter term, 𝑙𝑜𝑔 𝐵2comes from 

binary search and 𝐵2.5 comes from Hopcroft-Karp algorithm. 

The space complexity is: 

  𝒪(𝐼2 + 𝐼𝐵 + 𝐵2) = 𝒪(𝐼2), (E6) 

where 𝐵 ≤ 𝐼 , 𝐼2is the region distance matrix, 𝐵2 is the cluster 

distance matrix, and 𝐼𝐵 is the region partial ownerships. 

3) 2-MRPSS  

The time complexity of the combined two-stage approach is: 

 𝒪 ((
𝑡𝑝𝑒𝑟𝑖𝑜𝑑

𝑡𝑢𝑛𝑖𝑡 )
2

𝐼2 max 𝛽𝑖 +
𝑡𝑝𝑒𝑟𝑖𝑜𝑑

𝑡𝑢𝑛𝑖𝑡 𝐵2𝐼2 + 𝐵2.5 log 𝐵2),  (E7) 

and the space complexity is: 

  𝒪 (𝐼 (
𝑡𝑝𝑒𝑟𝑖𝑜𝑑

𝑡𝑢𝑛𝑖𝑡 ) (1 + max 𝛽𝑖) + 𝐼2).  (E8) 

 

F. ALTERNATIVE ACTION ALLOCATION METHODS FOR 

 EXPERIMENT #1 

 In the paper, we compare the mean maximum search time 

(MMST) of our clustering action allocation method with three 

alternatives methods: 1) naïve, 2) random, and 3) memetic. 
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Below, we detail the implementation of these alternative 

methods. 

1) Alternative Approach #1: Naïve Allocator  

We considered a three-stage naïve approach. The first step 

generates the order to perform all the team search actions using 

a single robot approximation. The second step follows the 

ordering to generate all the individual robot plans. The third 

step assigns specific robots to each plan. The naïve method is 

presented in Fig. F1. We implemented this approach as it is a 

direct extension of the single robot approach in [21]. 

 The first step is to generate an optimal single robot ordering 

for the team to perform all the search actions in 𝑈𝐴𝜔. This is 

performed by setting the starting location to 𝑅𝜔,0
(1)

 and solving 

the 𝑇𝑆𝑃2 we defined in Section IV.E.1.b of the paper. Next, we 

sequentially generate 𝐵 plans. Each plan is assigned actions 

until no additional action can be assigned without the plan 

duration exceeding 
1

𝐵
 of total time to complete the ordering. A 

plan may be assigned a portion of the search time for an action, 

in which case the following plan will be assigned the remainder 

of the search time for that action. To generate 𝑇𝑃𝜔, we 

optimally assign robots to the plans by solving the LBAP 

described in Section IV.E.1.d of the paper. 

 
Fig. F1.  Flow chart of the naïve allocator. 

2) Alternative Approach #2: Random Allocator 

The random approach generates a very large number of 

candidate team plans and selects the team plan with the 

minimum duration. We implemented this approach as the low 

computational complexity of randomly generating a plan 

enables a large percentage of the solution space to be sampled, 

and thus, a high-performance solution that minimizes the 

MMST to be selected. The random method is outlined in Fig. 

F2.  

 
Fig. F2.  Flow chart of random allocator. 

The first step of the method is to generate a random 

ordering of 𝑈𝐴𝜔 by selecting, with uniform probability, from 

all permutations of 𝑈𝐴𝜔. Based on this ordering, we then 

sequentially generate 𝐵 plans using the same procedure as the 

naïve method. The LBAP was then solved to assign robots to 

these plans and generate a proposed team plan. This planning 

process was repeated for the entire planning duration using 

various permutations of 𝑈𝐴𝜔. From all the proposed team 

plans, we select the best team plan to be the one which 

minimizes Eq. (10) in the paper, and this plan is executed by 

the team. 

3) Alternative Approach #3: Memetic Allocator 

The memetic allocator used is adapted from the memetic 

algorithm based on sequential variable neighborhood descent 

(MASVND) presented in [38] as it is the state-of-the-art for 

solving the min-max mTSP in real-time. The memetic 

approach works by first generating a set of random team plans 

and then modifying or combining these plans to generate new 

team plans as shown in Fig. F3. 

 
 Fig. F3.  Flow chart of memetic allocator. 

The first step of the memetic approach is to generate an 

initial population. A population consists of 100 individuals and 

each individual represents a candidate team plan. Each initial 

individual was generated from 𝑈𝐴𝜔 using the random team 

search action allocator discussed above, without the robot 

assignments. The second step is to optimize the initial 

population by solving 𝑇𝑆𝑃1 from Section IV.E.1.b for all robot 

search plans. A measure of fitness is assigned to each individual 

based on the inverse of its total duration, where duration is 

determined based on Eq. (10). The next step is to generate a 

new population and iteratively generate a new individual using 

the recombine or mutate operator to fill the population. The 

recombine operation is selected with a 30% probability and the 

mutate operation is selected otherwise. 

To perform the recombine operation, the first step is to select 

two individuals as parents. Each parent is determined by 

randomly selecting two individuals from the current population. 

The higher fitness individual is assigned as a parent with 80% 

probability and the other individual is assigned otherwise. After 

Unallocated Actions in 𝑇𝜔 (𝑈𝐴𝜔) 
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Order Parent Search Plans  
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If Recombine  
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 Inherit all Search Plans 
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Time is Not 
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If the Population is Full 
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selecting two parents, we order parent search plans from 

shortest to longest and select search plans from parents. With 

equal probability, the smallest cost plan from one of the parents 

is added to the new individual, and the other parent’s smallest 

cost plan is discarded. This process is then repeated until the 

new individual has 𝐵 plans, one for each robot. After each 

repetition, the actions in the selected plan are removed from all 

other plans to avoid duplicate actions in the new individual. 

To perform the mutate operation, the first step is to select one 

individual as a parent. The parent is determined as the highest 

fitness individual amongst three randomly selected individuals 

from the current population. The new individual proceeds to 

inherit all search plans from the parent. Then the individual 

randomly removes actions from the inherited search plans. Each 

action is removed with a probability that linearly decreases 

from 85% at the start of the planning duration to 10% at the 

end. 

 After using either the recombine or mutate operator, some 

actions in 𝑈𝐴𝜔 may be unassigned. Thus, the subsequent step is 

to assign any outstanding actions. This assignment process is 

performed by checking the effect of adding the search action at 

every position of all plans. The position-plan pair that 

minimizes the increase to the selected plan length, without 

exceeding the longest plan, is selected as the destination for the 

search action. If all position-plan pairs result in the selected plan 

length exceeding the longest plan, the position-plan pair that 

minimizes the new longest plan is selected.  

 After all 100 individuals in the new population are generated, 

we optimize the highest fitness individual using sequential 

variable neighborhood descent (seq-VND) [38]. Seq-VND 

modifies the individual’s current team plan by attempting to 

move a sequence of one to three consecutive actions from any 

search plan to any position in any other search plan. The 

sequence is placed in the first position found that would reduce 

the individual’s fitness. Sequences are iteratively moved until 

the fitness cannot be reduced. 

 By setting the newly generated population as the current 

population, the process of generating new populations is 

continued for the remainder of the planning duration. Proposed 

team plans are generated by solving the LBAP to assign robots 

for the highest fitness individual in each population. We then 

select the best team plan as the proposed team plan which 

minimizes Eq. (10) to output as 𝑇𝑃𝜔. 

G. VALIDATION TEST FOR PLANNING DURATION 

 As the team search action allocation module has the highest 

computational complexity, we validated that our clustering 

action allocation method and the three alternative allocation 

methods could plan in real-time. 

Search queries: we considered a small subset of the 

experiment search queries in order to determine a planning 

duration for our comparison. This included all combination of: 

environment size = {30, 36, 42} shared rooms, search duration 

= {15, 45, 75} minutes, number of target users = {1, 10, 20}, 

planning duration = {1, 10, 100} milliseconds, and search 

start time = {10:00, 14:00, 18:00} on a 24-h clock for a total of 

243 trials. We conducted this comparison for the case of 9 

robots as these scenarios have the highest computational 

complexity. The MMST versus planning time is presented in 

Fig. G1, where each point is an average across 81 trials.  

 
Fig. G1.  Mean maximum search time with respect to planning duration. 

For each of the three methods, we conducted a non-

parametric Kruskal-Wallis test (𝛼=0.05) with a Bonferroni 

correction (𝛼=0.0125) to determine if there were any 

statistically significant differences in MMST across the three 

planning durations. No statistically significant differences were 

found in the MMST across planning durations for our 

clustering allocator, 𝜒2(2) = 0.79, 𝑝 = 0.67; the naïve 

allocator, 𝜒2(2) = 0.00, 𝑝 = 1.00; and the random allocator, 

𝜒2(2) = 6.48, 𝑝 = 0.039. However, a statistically significant 

difference existed for the memetic allocator, 𝜒2(2) =
35.4, 𝑝 < 0.0001. A post-hoc Dunn’s test (𝛼=0.05) with a 

Bonferroni correction (𝛼=0.0167) showed that for the memetic 

allocator a statistically significant difference existed between 

the MMST of 1 ms and 10 ms, 𝑍(81) = 5.26, 𝑝 < 0.0001, and 

1 ms and 100 ms, 𝑍(81) = 5.77, 𝑝 < 0.0001, but not between 

10 ms and 100 ms 𝑍(81) = 0.73, 𝑝 = 0.233. Therefore, 

providing more than 10 ms of planning time does not result in 

any additional benefit in reducing the MMST for any allocator. 

This analysis validates that all four methods could plan in real-

time as their performance was maximized with only 10 ms of 

planning time and that 10 ms was sufficient for the 

experimental comparisons in the paper.   

H. ALTERNATIVE MULTIROBOT PERSON SEARCH SYSTEMS  FOR 

EXPERIMENT #2 

 In the paper, we compare the mean success rate of our aware 

2-MRPSS with strong coordination with respect to two 

alternatives methods: 1) a segmented approach (unaware with 

no coordination), and 2) a sequential approach (aware with 

weak coordination). Below, we detail the implementation of 

both alternatives. 

 
Fig. H1.  Flow chart of the unaware approach. 

1) Alternative Approach #1: Segmented Approach  

The segmented approach is based on the method in [14], 

where an environment is segmented into an area for each robot 

to search. Although the robots are unaware of each other and 

Distribute the Environment Among the Robots 

Search Query 
  

Team Plan (𝑇𝑃) 
  

Generate a Set of Actions for Each Robot  

Determine the Order to Perform the Actions  
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do not coordinate, this approach prevents redundant actions 

between the robots while minimizing travel time. We have 

integrated this with our two-stage approach, Fig. H1.  

The first step is to distribute the environment among the 

robots. This is achieved by determining the total number of 

cells in the environment, Γ, using the grid representation of the 

regions from the local search method presented in Part B above. 

In [14], the environment was an open field and was therefore 

easily divided into rectangles of equal size for each robot. As 

our environment has walls between regions, we use an ad-hoc 

technique to generate a unique segmentation of each scenario 

environment that assigns an area to each robot such that the 

maximum travel time between any pair of regions in an area is 

minimized. The ad-hoc technique first assigns an ordering to all 

cells in the environment and then sequentially assigns each 

robot a contiguous set of cells from that ordering. The number 

of cells assigned to each robot was selected to be as close to 

uniform as possible using the following procedure. Let 𝑣 be the 

maximum number of cells each robot can search in a uniformly 

distributed workload and κ be the cells that remain unsearched:   

 𝑣 +
𝜅

𝐵
=

Γ

𝐵
, 𝑣 ∈ ℤ, 𝜅 ∈ ℤ, 0 ≤

𝜅

𝐵
< 1. (H1) 

Then, the first 𝜅 robots have 𝑣 + 1 cells and the rest have 𝑣 

cells. The second step is to generate a set of actions for each 

robot by solving the CMPMKP in Section IV.D of the paper to 

generate 𝑈𝐴 for a single robot team, e.g. 𝐵 = 1, in an 

environment containing only the assigned cells. Finally, to 

generate a search plan for each robot we determine the order to 

perform the actions by solving 𝑇𝑆𝑃2 for each robot in each time 

period. The culmination of the robot search plans is the team 

plan executed by the team. 

2) Alternative Approach #2: Sequential Approach 

The sequential approach is based on the approach presented 

in [17], where each robot plans in a sequence while considering 

the actions of the robots that have already generated their 

plans. This sequential approach prevents redundant actions 

between the robots. The approach is also combined with our 

two-stage approach, Fig. H2. 

 

 

 

 

 

 

 

 

 
Fig.  H2. Flow chart of the weakly coordinated approach. 

 For the sequential approach, we start by considering the first 

robot and generate a set of actions for a single robot by 

solving the CMPMKP in Section IV.D of the paper for a team 

of 𝐵 = 1 robot. Then, to generate a search plan for this robot, 

we determine the order to perform the actions by solving 𝑇𝑆𝑃2 

in each time period. Each subsequent robot generates its plan 

similarly to the first, however it updates the edge reward as in 

Eq. (9) of the paper, which are used to solve the CMPMKP, to 

account for the actions performed by robots which had already 

planned. To achieve this, the edge rewards are updated as 

follows: 

 𝑊 (𝐸𝑡(𝑎𝑖,𝜔
∗ )

𝑖 ) = − ∑ 𝑃 (⋃ 𝜃
𝑧,𝑖

𝐴𝐴
𝑖,𝜔′Ω

𝜔′=1 )𝑍
𝑧=1  (H2) 

 + ∑ 𝑃 (⋃ 𝜃
𝑧,𝑖

𝐴𝐴
𝑖,𝜔′

𝜔′∈[1,Ω]\𝜔 )𝑍
𝑧=1 + ∑ 𝑃 (𝜃

𝑧,𝑖

𝑃𝐴𝑖,𝜔)𝑍
𝑧=1 . 

𝐴𝐴𝑖,𝜔′  is a set containing actions 𝑈𝐴𝑖,𝜔′  planned by the current 

robot and actions 𝑃𝐴𝑖,𝜔′  planned by other robots. As such, the 

team search time 𝑡𝑞(𝑎𝑖,𝜔
∗ ) in 𝐴𝐴𝑖,𝜔′  is equal to the sum of the 

team search times 𝑡(𝑎𝑖,𝜔
∗ ) in 𝑈𝐴𝑖,𝜔′ and 𝑞(𝑎𝑖,𝜔

∗ ) in 𝑃𝐴𝑖,𝜔′: 

 𝑡𝑞(𝑎𝑖,𝜔
∗ ) = 𝑡(𝑎𝑖,𝜔

∗ ) + 𝑞(𝑎𝑖,𝜔
∗ ).  (H3) 

Once each robot has generated a search plan using the 

modified rewards, Eq. (H3), the resulting set of search plans 

form the team plan and are executed by the robots. 
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