
 1

SUPPLEMENTARY INFORMATION FOR A MULTIROBOT PERSON SEARCH SYSTEM FOR FINDING MULTIPLE DYNAMIC USERS IN

HUMAN-CENTERED ENVIRONMENTS

Sharaf C. Mohamed, Angus Fung, and Goldie Nejat, Member, IEEE

A. EXAMPLE SEARCH SCENARIOS

Figure A represents larger scenario images of our example

applications, Fig.1, for which our 2-MRPSS method can be

applied. Namely, a floor in: a long-term care home (Fig. A1

(a)); a hospital (Fig. A1 (b)); and an office building (Fig. A1

(c)).

B. LIST OF SYMBOLS

1) Target Users

𝑈′ set of all target users

𝑍 total number of target users

𝑈𝑧
′ 𝑧𝑡ℎ target user

2) Regions

𝑅 set of all regions

𝐼 total number of regions

𝑅𝑖 𝑖𝑡ℎ region

𝑅𝑖′ 𝑖′𝑡ℎ
 region

𝑡𝑖
𝑖′

 travel time between 𝑅𝑖 and 𝑅𝑖′

𝛽𝑖 number of cells in 𝑅𝑖

3) Dataset

𝐷𝑧 dataset containing observations of the daily

location patterns for 𝑈𝑧
′

𝑌 number of observation days

𝜖𝑦 𝑦𝑡ℎ observation day

𝑑𝑧,𝑖,𝑦 segment of time 𝑈𝑧
′ occupied 𝑅𝑖 during 𝜖𝑦 in

the dataset 𝐷𝑧

4) Time Periods
𝑇 set of all time periods

Ω total number of time periods

𝑇𝜔 𝜔𝑡ℎ time period

𝑇𝑗 𝑗𝑡ℎ time period

𝑇𝑘 𝑘𝑡ℎ time period

Target User

Target User

Target User

Target User

Target User

Robot

Robot

Robot

Robot

Robot

 (a) (b) (c)

Fig. A1. Examples of typical scenarios of a floor in a: (a) long-term care home, (b) hospital, and (c) office building. Robots are orange, target people are cyan.

Robot

Robot

Robot

Robot

Robot

Target User

Target User

Target User

Target User

Target User Robot Robot

Robot

Robot

Robot

Target User

Target User

Target User

Target User

Target User

Target User

IEEE Transactions on Cybernetics. This is the author’s version of an article that has been published. Changes were made

to this version by the publisher prior to publication. (https://doi.org/10.1109/TCYB.2022.3166481)

https://doi.org/10.1109/TCYB.2022.3166481

 2

𝑡𝑝𝑒𝑟𝑖𝑜𝑑 duration of a time period

ℙ power set of all subsets of time periods

Λ number of subsets in ℙ

𝕡λ 𝜆𝑡ℎ subset in ℙ

𝑇𝑗,𝑘 time window between 𝑇𝑗 and 𝑇𝑘

5) Robots
ℝ set of all robots

𝐵 total number of robots

ℝ𝑏 𝑏𝑡ℎ robot

𝑅0
(𝑏)

 initial region of ℝ𝑏

𝑅𝜔,0
(𝑏)

 initial region of ℝ𝑏 during 𝑇𝜔

𝑎𝑖,𝜔,𝑡 robot action to search 𝑅𝑖 during 𝑇𝜔 for a

duration of t
𝑡𝑚𝑜𝑣𝑒 average time for a robot to move between

regions

6) Search Query

𝑆 search query

𝑡𝑠𝑡𝑎𝑟𝑡 start time of the search

𝑡𝑒𝑛𝑑 end time of the search

𝑡𝑝𝑙𝑎𝑛 duration of time allocated to planning

7) Search Plan

𝑇𝑃 team plan

𝑎𝑖,𝜔
∗ team action for searching 𝑅𝑖 during 𝑇𝜔, the

asterisk indicates the action belongs to the

team

𝑡𝑢𝑛𝑖𝑡 discrete time increment for search actions

𝑆𝑃𝜔
(𝑏)

 search plan for ℝ𝑏 during 𝑇𝜔

𝑎𝜔,ℎ
(𝑏)

 ℎ𝑡ℎ search action of 𝑆𝑃𝜔
(𝑏)

𝑅𝜔,ℎ
(𝑏)

 ℎ𝑡ℎ search region of 𝑆𝑃𝜔
(𝑏)

𝑡𝜔,ℎ
(𝑏)

 ℎ𝑡ℎ search duration of 𝑆𝑃𝜔
(𝑏)

𝕊𝑖,𝜔 set of robot actions in 𝑇𝑃 searching 𝑅𝑖

during 𝑇𝜔

8) Unallocated Actions

𝑈𝐴 unallocated team search actions

𝑈𝐴𝜔 unallocated team search actions during 𝑇𝜔

𝑈𝐴𝑖,𝜔 unallocated team search actions for 𝑅𝑖

during 𝑇𝜔

9) Min-flow graph

𝐺𝜔 minimum flow graph for 𝑇𝜔

𝑄𝜔 time elapsed in 𝑇𝜔

𝑁𝑄𝜔

𝑖,𝜔 decision node for the sequential min-flow

graph to select the search duration of 𝑅𝑖 in

𝑇𝜔 given that 𝑄𝜔 time elapsed while

searching 𝑅1 to 𝑅𝑖−1

𝐸
𝑡(𝑎𝑖,𝜔

∗)
𝑖,𝜔 edge for the sequential min-flow graph

corresponding to the decision to search 𝑅𝑖

for a duration of 𝑡(𝑎𝑖,𝜔
∗) during 𝑇𝜔

10) Clusters

𝐹𝐶𝜔 set of fuzzy clusters in 𝑇𝜔

𝐹 number of fuzzy clusters in 𝐹𝐶𝜔

𝐹𝐶𝜔,𝑓 𝑓𝑡ℎ fuzzy cluster in 𝐹𝐶𝜔

𝐹𝐶𝜔,𝑓′ 𝑓′𝑡ℎ
 fuzzy cluster in 𝐹𝐶𝜔

𝐶𝑇𝑓
𝑓′

 distance between clusters 𝐹𝐶𝜔,𝑓 and 𝐹𝐶𝜔,𝑓′

ℝ𝜔,𝑓 robot assigned to 𝐹𝐶𝜔,𝑓

𝜌𝑖,𝜔,𝑓 ownership of cluster 𝐹𝐶𝜔.𝑓 over action 𝑎𝑖,𝜔
∗

𝜌𝑖,𝜔
+ amount of ownership over 𝑎𝑖,𝜔

∗ transferred

𝜌𝑖,𝜔,𝑓
+ ownership of cluster 𝐹𝐶𝜔,𝑓 over action 𝑎𝑖,𝜔

∗

after a transfer

𝐹𝐶̅̅̅̅
𝜔 highest cost fuzzy cluster in 𝐹𝐶𝜔

𝐹𝐶𝜔
̇ fuzzy cluster closest to 𝐹𝐶̅̅̅̅

𝜔 in 𝐹𝐶𝜔

𝐹𝑆 far set

𝐶𝑆 close set

a�̃� action in 𝐹𝐶𝜔,𝑓 closest to 𝐶𝑆

𝐹𝐶�̃� fuzzy clusters in the order they are added to

𝐶𝑆

𝐹𝐶𝜔,�̃� 𝑓𝑡ℎ fuzzy cluster in 𝐹𝐶�̃�

Ψ�̃� cost of ordered cluster set 𝐹𝐶�̃�

Ψ𝜔,�̃� cost of cluster 𝐹𝐶𝜔,�̃�

11) Cluster Plan

𝐶𝑃𝜔,𝑓 cluster plan

𝑀𝑓
𝐶𝑃 number of actions in 𝐶𝑃𝜔,𝑓

𝑎𝜔,𝑔
(𝑓),𝐶𝑃

 𝑔𝑡ℎ action in 𝐶𝑃𝜔,𝑓

𝑅𝑔
(𝑓),𝐶𝑃

 𝑔𝑡ℎ region in 𝐶𝑃𝜔,𝑓

12) Local Search

𝑡𝑐𝑒𝑙𝑙 duration of time for a robot to search a cell

𝜁𝑖,𝜔
(𝑏)

 number of cells for ℝ𝑏 to search in 𝑅𝑖 during

𝑇𝜔

𝛾𝑖,𝜔 occurrence of a search in 𝑅𝑖 during 𝑇𝜔

𝜃𝑧
𝑈𝐴 occurrence of the team finding 𝑈𝑧

′ when

performing actions in 𝑈𝐴

𝜃𝑧,𝑖
𝑈𝐴 occurrence of the team finding 𝑈𝑧

′ in 𝑅𝑖

when performing actions in 𝑈𝐴

𝜙𝑧,𝑖,𝑦
𝑈𝐴 occurrence of the team finding 𝑈𝑧

′ in 𝑅𝑖

when performing actions in 𝑈𝐴 based on

𝑑𝑧,𝑖,𝑦

𝜙𝑧,𝑖,𝑦,𝜔
𝑈𝐴 occurrence of the team finding 𝑈𝑧

′ in 𝑅𝑖

during 𝑇𝜔 performing actions in 𝑈𝐴 based

on 𝑑𝑧,𝑖,𝑦

𝜉𝑧,𝑖,𝑦,𝜔
𝑈𝐴 the expected time during the search of 𝑅𝑖 in

𝑇𝜔 in which 𝑈𝑧
′ is in 𝑅𝑖 based on 𝑑𝑧,𝑖,𝑦

 3

13) Functions

𝑃(𝑥) probability of occurrence 𝑥

𝑃𝑧(𝑥) probability of occurrence 𝑥 for 𝑈𝑧
′

𝕊𝜔(𝑥) set of robot-cluster pairs with cost below 𝑥

𝑡(𝑥) duration of 𝑥

𝑊(𝑥) reward acquired by 𝑥

Ψ(𝑥) cost of 𝑥

Ψ+(𝑥) cost of 𝑥 after transfer

|𝑥| cardinality of 𝑥

C. USER MODEL

The user location model is extended from [21], in which it

was presented for a single robot. Prior to searching the

environment, the robot team acquires data on users for 𝑌 days.

The dataset for each user, 𝐷𝑧 =

{(𝑑𝑧,1,1, … , 𝑑𝑧,1,𝑌), … , (𝑑𝑧,𝐼,1, … , 𝑑𝑧,𝐼,𝑌)}, contains observations

of the location patterns for 𝑈𝑧
′ . Each observation 𝑑𝑧,𝑖,𝑦 indicates

the time segments that 𝑈𝑧
′ occupies 𝑅𝑖 on observation day 𝜖𝑦.

During a search, user data is used to predict their locations.

A user has an equal probability of repeating any day, 𝑃𝑧(𝜖𝑦):

 𝑃𝑧(𝜖𝑦) =
1

𝑌
, ∀𝑦 ∈ [1, 𝑌]. (C1)

Each observation that occurs during 𝜖𝑦 has a probability of

occurring, 𝑃(𝑑𝑧,𝑖,𝑦), equal to the probability of 𝜖𝑦 occurring:

 𝑃(𝑑𝑧,𝑖,𝑦) = 𝑃𝑧(𝜖𝑦), ∀𝑧 ∈ [1, 𝑍], 𝑖 ∈ [1, 𝐼]. (C2)

Given an observation 𝑑𝑧,𝑖′,𝑦′ occurs, then all observations from

that day occur and all observations from other days do not:

 𝑃(𝑑𝑧,𝑖,𝑦|𝑑𝑧,𝑖′,𝑦′) = {
0, if 𝑦′ ≠ 𝑦

1, if 𝑦′ = 𝑦
, ∀𝑖 ∈ [1, 𝐼]. (C3)

As each day is mutually exclusive, we obtain the user’s unique

location patterns demonstrated during the observation day.

In the user location model, we assume the probability of 𝑈𝑧
′

occupying 𝑅𝑖 depends on if 𝑈𝑧
′ was previously in 𝑅𝑖, but is

independent of other regions 𝑅𝑖′. By capturing the dependence

within a region, the location model can determine when a user

will revisit a region. Furthermore, the number of probabilities

needed by the model is reduced from (
𝑡𝑝𝑒𝑟𝑖𝑜𝑑

𝑡𝑢𝑛𝑖𝑡)
𝐼Ω

 to (
𝑡𝑝𝑒𝑟𝑖𝑜𝑑

𝑡𝑢𝑛𝑖𝑡)
Ω

;

e.g., for 𝐼 = 30 regions, Ω = 3 time periods, 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 = 900𝑠,

and 𝑡𝑢𝑛𝑖𝑡 = 15𝑠, the total number of probabilities to compute

is reduced from 1.1 × 10160 to 2.2 × 105. This location model

is used to generate rewards for robot search actions that can

effectively reason about when to search a region and if needed

to search the region multiple times during a search time frame.

Empirical analysis verified that the use of conditional

probabilities within the user location model improved the

search performance with respect to the mean success rate (the

ratio of users found over the target users) compared to methods

that assume conditional independence in their user model.

Experiments were also conducted to demonstrate the

robustness of the user location model by introducing the

following forms of uncertainty [21]: 1) misalignment of user

activities with time periods, 2) observational errors during data

collection, 3) deviation of user behaviors from their observed

data, 4) varying number of observation days, and 5)

introduction of detection errors during the search. It was found

that when uncertainty led to errors in the users’ location

probability distributions, uncertainty forms (1)-(3) above, the

search planner outperformed both MDP and coverage planners.

In fact, misalignment of activities with time periods had little

impact on the planner’s mean success rate, and the planner had

higher mean success rates when observational errors and

behavior deviations were less than 75%.

D. LOCAL SEARCH

Our 2-MRPSS presented in the paper is independent of the

local planner used, as long as the local planner can provide

𝑃(𝜃𝑧,𝑖
𝑈𝐴) as needed in Eqs. (8)-(11) of the paper. Herein, for

searching a region 𝑅𝑖 in time period 𝑇𝜔 we used a two-stage

approach where we first determined an ordered set of cells for

the team to visit in the region and then divided the cells

amongst the robots. For the first stage, the team selected the

ordered cells in the region a single robot would search given the

team search time 𝑡(𝑎𝑖,𝜔
∗) using a grid-based coverage local

search [21]. For the second stage, the selected ordered set of

cells are divided amongst multiple robots such that each robot

ℝ𝑏 searches 𝜁𝑖,𝜔
(𝑏)

 cells based on its assigned search duration for

𝑅𝑖 during 𝑇𝜔, 𝑡(𝑎𝑖,𝜔
(𝑏)

):

 𝜁𝑖,𝜔
(𝑏)

=
𝑡(𝑎𝑖,𝜔

(𝑏)
)

𝑡𝑐𝑒𝑙𝑙 . (D1)

Specifically, ℝ𝑏 searches cells (𝜁𝑖,𝜔
(𝑏−1)

+ 1) to 𝜁𝑖,𝜔
(𝑏)

 in the

ordered set of cells for the team, where 𝜁𝑖,𝜔
(0)

 is defined as 0.

To determine 𝑃(𝜃𝑧,𝑖
𝑈𝐴) for the local search, let 𝜙𝑧,𝑖,𝑦

𝑈𝐴 represent

the occurrence that 𝑈𝑧
′ is found in 𝑅𝑖 if the robots execute the

actions in 𝑈𝐴 and 𝑈𝑧
′ is in 𝑅𝑖 during the time indicated by

observation 𝑑𝑧,𝑖,𝑦 . Then, 𝜃𝑧,𝑖
𝑈𝐴 must occur if for any 𝑦 ∈ [1, 𝑌𝑖]

the occurrence 𝜙𝑧,𝑖,𝑦
𝑈𝐴 and observation 𝑑𝑧,𝑖,𝑦 both occur:

 𝑃(𝜃𝑧,𝑖
𝑈𝐴) = 𝑃(⋃ 𝑑𝑧,𝑖,𝑦 , 𝜙𝑧,𝑖,𝑦

𝑈𝐴𝑌𝑖
𝑦=1). (D2)

The right hand side of the equation can be simplified as

observations 𝑑𝑧,𝑖,𝑦 and 𝑑𝑧,𝑖,𝑦′, ∀𝑦 ≠ 𝑦′, are mutually exclusive:

 𝑃(⋃ 𝑑𝑧,𝑖,𝑦 , 𝜙𝑧,𝑖,𝑦
𝑈𝐴𝑌𝑖

𝑦=1) = ∑ 𝑃(𝑑𝑧,𝑖,𝑦 , 𝜙𝑧,𝑖,𝑦
𝑈𝐴)

𝑌𝑖
𝑦=1 . (D3)

To determine 𝑃(𝑑𝑧,𝑖,𝑦 , 𝜙𝑧,𝑖,𝑦
𝑈𝐴), we note that 𝑑𝑧,𝑖,𝑦 is independent

of 𝜙𝑧,𝑖,𝑦
𝑈𝐴 . Namely, the probability of an observation being

uniformly sampled from the data set is independent of the

search actions in 𝑈𝐴 finding the user during that observation:

 𝑃(𝑑𝑧,𝑖,𝑦 , 𝜙𝑧,𝑖,𝑦
𝑈𝐴 ,)= 𝑃(𝑑𝑧,𝑖,𝑦)𝑃(𝜙𝑧,𝑖,𝑦

𝑈𝐴). (D4)

𝑃(𝑑𝑧,𝑖,𝑦) is obtained using Eq. (C2). To determine 𝑃(𝜙𝑧,𝑖,𝑦
𝑈𝐴),

 4

we introduce 𝜙𝑧,𝑖,𝑦,𝜔
𝑈𝐴 which represents the occurrence of 𝜙𝑧,𝑖,𝑦

𝑈𝐴

during 𝑇𝜔. 𝑈𝑧
′ is found in 𝑅𝑖 during the search if the user is

found in 𝑅𝑖 during any time period:

 𝑃(𝜙𝑧,𝑖,𝑦
𝑇𝑃) = 𝑃(⋃ 𝜙𝑧,𝑖,𝑦,𝜔

𝑈𝐴Ω
𝜔=1). (D5)

Moreover, we can express the union as a series of intersections:

𝑃(⋃ 𝜙𝑧,𝑖,𝑦,𝜔
𝑈𝐴Ω

𝜔=1) = ∑ Μ(𝕡𝜆)𝑃(⋂ 𝜙𝑧,𝑖,𝑦,𝜔
𝑈𝐴

𝑇𝜔∈𝕡𝜆
)𝕡𝜆∈ℙ(𝑇) , (D6a)

and

 Μ(𝕡𝜆) = {
1, if |𝕡𝜆| is odd

−1, if |𝕡𝜆| is even
 . (D6b)

𝕡𝜆 is a unique subset of 𝑇 = {𝑇1, … , 𝑇𝜔} and ℙ = {𝕡1, … , 𝕡Λ }

is the power set of 𝑇. |𝕡𝜆| is the cardinality of 𝕡𝜆. Namely, to

compute a union, all intersects of odd sized subsets must be

added, and all intersect of even sized subsets must be

subtracted. As 𝜙𝑧,𝑖,𝑦,𝜔
𝑈𝐴 and 𝜙𝑧,𝑖,𝑦,𝜔′

𝑈𝐴 are independent ∀𝜔 ≠ 𝜔′,

𝑃(⋂ 𝜙𝑧,𝑖,𝑦,𝜔
𝑈𝐴

𝑇𝜔∈𝕡) can be computed as a product:

 𝑃(⋂ 𝜙𝑧,𝑖,𝑦,𝜔
𝑈𝐴

𝑇𝜔∈𝕡) = ∏ 𝑃(𝜙𝑧,𝑖,𝑦,𝜔
𝑈𝐴)𝑇𝜔∈𝕡 . (D7)

As the user location data only indicates the region a user is

in, and not the cell within the region, user locations across the

cells have a uniform probability distribution. We introduce

𝜉𝑧,𝑖,𝑦,𝜔
𝑈𝐴 , as the expected time during the search of 𝑅𝑖 in 𝑇𝜔 in

which 𝑈𝑧
′ is in 𝑅𝑖 based on 𝑑𝑧,𝑖,𝑦. The probability of finding the

user in region 𝑅𝑖 can then be expressed as the expected amount

of time spent searching 𝑅𝑖 while the user is present divided by

the time to search the entire region, denoted 𝛽𝑖:

 𝑃(𝜙𝑧,𝑖,𝑦,𝜔
𝑈𝐴) =

𝜉𝑧,𝑦,𝑖,𝜔
𝑈𝐴

𝛽i
. (D8)

As 𝑈𝐴 does not specify when a search occurs during a time

period, each search action can start at any time, 𝜏, during the

time period with equal probability. To determine 𝜉𝑧,𝑦,𝑖,𝜔
𝑈𝐴 , we

integrate over all possible starting times 𝜏 for which the entire

search action 𝑎𝑖,𝜔
∗ can be completed within 𝑇𝜔:

 𝜉𝑧,𝑣,𝑖,𝜔
𝑈𝐴 = ∫ ∫ 𝑜𝑐𝑐𝑧,𝑖,𝑦,𝜔(𝑡)

𝑡
𝑝𝑒𝑟𝑖𝑜𝑑−𝑡(𝑎𝑖,𝜔

∗)

0

∞

−∞
×

 𝑟𝑒𝑐𝑡(𝑎𝑖,𝜔
∗),𝜔

 (𝑡 − 𝜏)𝑑τd𝑡, (D9a)

 𝑜𝑐𝑐𝑧,𝑖,𝑦,𝜔(𝑡) = {
1, if 𝑑𝑧,𝑖,𝑦 indicates 𝑈𝑧

′ is in 𝑅𝑖 at 𝑡

0, otherwise
, (D9b)

𝑟𝑒𝑐𝑡(𝑎𝑖,𝜔
∗),𝜔

 (𝑡) = {
1, 0 ≤ 𝑡 ≤ 𝑡(𝑎𝑖,𝜔

∗)

0, otherwise
. (D9c)

𝑜𝑐𝑐𝑧,𝑖,𝑦,𝜔(𝑡) is a binary function which represents the time

during 𝑇𝜔 that 𝑈𝑧
′ is in 𝑅𝑖 based on 𝑑𝑧,𝑖,𝑦, and 𝑟𝑒𝑐𝑡(𝑎𝑖,𝜔

∗),𝜔
 (𝑡) is

a rectangular function which represents the duration of the

search action 𝑎𝑖,𝜔
∗ .

E. COMPLEXITY ANALYSIS

 We provide the time and space complexity for the proposed

team action selection and action allocation approach. In

particular, for solving 1) the sequential min-flow graph, 2)

fuzzy clustering, and 3) the overall 2-MRPSS.

1) Sequential Min-flow Graph

 The time complexity of solving the sequential min-flow

graph using the Bellman-Ford algorithm is:

 𝑂(|𝑉||𝐸|), (E1)

where:

 |𝑉| = 𝐼 (
𝑡𝑝𝑒𝑟𝑖𝑜𝑑

𝑡𝑢𝑛𝑖𝑡), (E2)

 |𝐸| = |𝑉|(max 𝛽𝑖). (E3)

The space complexity is:

𝑂(|𝑉| + |𝐸|). (E4)

2) Fuzzy Clustering

The time complexity of the fuzzy clustering approach is:

𝒪 (
𝑡𝑝𝑒𝑟𝑖𝑜𝑑

𝑡𝑢𝑛𝑖𝑡 𝐵2𝐼2 + 𝑙𝑜𝑔 𝐵2 ⋅ 𝐵2.5). (E5)

It represents the summation of the time complexity of

generating initial clusters with K-means++ 𝒪(BI); the EM

algorithm 𝒪 (
𝑡𝑝𝑒𝑟𝑖𝑜𝑑

𝑡𝑢𝑛𝑖𝑡 𝐵2𝐼2); and assigning robots to clusters

𝒪(log B2 ⋅ 𝐵2.5), where for the latter term, 𝑙𝑜𝑔 𝐵2comes from

binary search and 𝐵2.5 comes from Hopcroft-Karp algorithm.

The space complexity is:

 𝒪(𝐼2 + 𝐼𝐵 + 𝐵2) = 𝒪(𝐼2), (E6)

where 𝐵 ≤ 𝐼 , 𝐼2is the region distance matrix, 𝐵2 is the cluster

distance matrix, and 𝐼𝐵 is the region partial ownerships.

3) 2-MRPSS

The time complexity of the combined two-stage approach is:

 𝒪 ((
𝑡𝑝𝑒𝑟𝑖𝑜𝑑

𝑡𝑢𝑛𝑖𝑡)
2

𝐼2 max 𝛽𝑖 +
𝑡𝑝𝑒𝑟𝑖𝑜𝑑

𝑡𝑢𝑛𝑖𝑡 𝐵2𝐼2 + 𝐵2.5 log 𝐵2), (E7)

and the space complexity is:

 𝒪 (𝐼 (
𝑡𝑝𝑒𝑟𝑖𝑜𝑑

𝑡𝑢𝑛𝑖𝑡) (1 + max 𝛽𝑖) + 𝐼2). (E8)

F. ALTERNATIVE ACTION ALLOCATION METHODS FOR

 EXPERIMENT #1

 In the paper, we compare the mean maximum search time

(MMST) of our clustering action allocation method with three

alternatives methods: 1) naïve, 2) random, and 3) memetic.

 5

Below, we detail the implementation of these alternative

methods.

1) Alternative Approach #1: Naïve Allocator

We considered a three-stage naïve approach. The first step

generates the order to perform all the team search actions using

a single robot approximation. The second step follows the

ordering to generate all the individual robot plans. The third

step assigns specific robots to each plan. The naïve method is

presented in Fig. F1. We implemented this approach as it is a

direct extension of the single robot approach in [21].

 The first step is to generate an optimal single robot ordering

for the team to perform all the search actions in 𝑈𝐴𝜔. This is

performed by setting the starting location to 𝑅𝜔,0
(1)

 and solving

the 𝑇𝑆𝑃2 we defined in Section IV.E.1.b of the paper. Next, we

sequentially generate 𝐵 plans. Each plan is assigned actions

until no additional action can be assigned without the plan

duration exceeding
1

𝐵
 of total time to complete the ordering. A

plan may be assigned a portion of the search time for an action,

in which case the following plan will be assigned the remainder

of the search time for that action. To generate 𝑇𝑃𝜔, we

optimally assign robots to the plans by solving the LBAP

described in Section IV.E.1.d of the paper.

Fig. F1. Flow chart of the naïve allocator.

2) Alternative Approach #2: Random Allocator

The random approach generates a very large number of

candidate team plans and selects the team plan with the

minimum duration. We implemented this approach as the low

computational complexity of randomly generating a plan

enables a large percentage of the solution space to be sampled,

and thus, a high-performance solution that minimizes the

MMST to be selected. The random method is outlined in Fig.

F2.

Fig. F2. Flow chart of random allocator.

The first step of the method is to generate a random

ordering of 𝑈𝐴𝜔 by selecting, with uniform probability, from

all permutations of 𝑈𝐴𝜔. Based on this ordering, we then

sequentially generate 𝐵 plans using the same procedure as the

naïve method. The LBAP was then solved to assign robots to

these plans and generate a proposed team plan. This planning

process was repeated for the entire planning duration using

various permutations of 𝑈𝐴𝜔. From all the proposed team

plans, we select the best team plan to be the one which

minimizes Eq. (10) in the paper, and this plan is executed by

the team.

3) Alternative Approach #3: Memetic Allocator

The memetic allocator used is adapted from the memetic

algorithm based on sequential variable neighborhood descent

(MASVND) presented in [38] as it is the state-of-the-art for

solving the min-max mTSP in real-time. The memetic

approach works by first generating a set of random team plans

and then modifying or combining these plans to generate new

team plans as shown in Fig. F3.

 Fig. F3. Flow chart of memetic allocator.

The first step of the memetic approach is to generate an

initial population. A population consists of 100 individuals and

each individual represents a candidate team plan. Each initial

individual was generated from 𝑈𝐴𝜔 using the random team

search action allocator discussed above, without the robot

assignments. The second step is to optimize the initial

population by solving 𝑇𝑆𝑃1 from Section IV.E.1.b for all robot

search plans. A measure of fitness is assigned to each individual

based on the inverse of its total duration, where duration is

determined based on Eq. (10). The next step is to generate a

new population and iteratively generate a new individual using

the recombine or mutate operator to fill the population. The

recombine operation is selected with a 30% probability and the

mutate operation is selected otherwise.

To perform the recombine operation, the first step is to select

two individuals as parents. Each parent is determined by

randomly selecting two individuals from the current population.

The higher fitness individual is assigned as a parent with 80%

probability and the other individual is assigned otherwise. After

Unallocated Actions in 𝑇𝜔 (𝑈𝐴𝜔)

Team Plan during 𝑇𝜔 (𝑇𝑃𝜔)

Generate an Optimal Single Robot Ordering

Assign Robots

Sequentially Generate 𝑩 Plans

Generate a Random Ordering

Sequentially Generate 𝑩 Plans

Unallocated Actions in 𝑇𝜔 (𝑈𝐴𝜔)

Team Plan during 𝑇𝜔 (𝑇𝑃𝜔)

Select the Best Team Plan

If Planning

Time Not

Exceeded

If Planning Time Exceeded

Assign Robots

Generate an Initial Population

Optimize the Initial Population

Unallocated Actions in 𝑇𝜔 (𝑈𝐴𝜔)

Team Plan during 𝑇𝜔 (𝑇𝑃𝜔)

 Generate a New Individual

Select Two Individuals as Parents Select One Individual as a Parent

Order Parent Search Plans

Select Search Plans from Parents

If Recombine

If Mutate

 Inherit all Search Plans

Randomly Removes Actions

 Generate a New Population

If the Population
is Not Full

 Optimize the Highest Fitness Individual

If Planning

Time is Not
Exceeded

If the Population is Full

Select the Best Team Plan

Assign Robots

If Planning Time is Exceeded

Assign any Outstanding Actions

 6

selecting two parents, we order parent search plans from

shortest to longest and select search plans from parents. With

equal probability, the smallest cost plan from one of the parents

is added to the new individual, and the other parent’s smallest

cost plan is discarded. This process is then repeated until the

new individual has 𝐵 plans, one for each robot. After each

repetition, the actions in the selected plan are removed from all

other plans to avoid duplicate actions in the new individual.

To perform the mutate operation, the first step is to select one

individual as a parent. The parent is determined as the highest

fitness individual amongst three randomly selected individuals

from the current population. The new individual proceeds to

inherit all search plans from the parent. Then the individual

randomly removes actions from the inherited search plans. Each

action is removed with a probability that linearly decreases

from 85% at the start of the planning duration to 10% at the

end.

 After using either the recombine or mutate operator, some

actions in 𝑈𝐴𝜔 may be unassigned. Thus, the subsequent step is

to assign any outstanding actions. This assignment process is

performed by checking the effect of adding the search action at

every position of all plans. The position-plan pair that

minimizes the increase to the selected plan length, without

exceeding the longest plan, is selected as the destination for the

search action. If all position-plan pairs result in the selected plan

length exceeding the longest plan, the position-plan pair that

minimizes the new longest plan is selected.

 After all 100 individuals in the new population are generated,

we optimize the highest fitness individual using sequential

variable neighborhood descent (seq-VND) [38]. Seq-VND

modifies the individual’s current team plan by attempting to

move a sequence of one to three consecutive actions from any

search plan to any position in any other search plan. The

sequence is placed in the first position found that would reduce

the individual’s fitness. Sequences are iteratively moved until

the fitness cannot be reduced.

 By setting the newly generated population as the current

population, the process of generating new populations is

continued for the remainder of the planning duration. Proposed

team plans are generated by solving the LBAP to assign robots

for the highest fitness individual in each population. We then

select the best team plan as the proposed team plan which

minimizes Eq. (10) to output as 𝑇𝑃𝜔.

G. VALIDATION TEST FOR PLANNING DURATION

 As the team search action allocation module has the highest

computational complexity, we validated that our clustering

action allocation method and the three alternative allocation

methods could plan in real-time.

Search queries: we considered a small subset of the

experiment search queries in order to determine a planning

duration for our comparison. This included all combination of:

environment size = {30, 36, 42} shared rooms, search duration

= {15, 45, 75} minutes, number of target users = {1, 10, 20},

planning duration = {1, 10, 100} milliseconds, and search

start time = {10:00, 14:00, 18:00} on a 24-h clock for a total of

243 trials. We conducted this comparison for the case of 9

robots as these scenarios have the highest computational

complexity. The MMST versus planning time is presented in

Fig. G1, where each point is an average across 81 trials.

Fig. G1. Mean maximum search time with respect to planning duration.

For each of the three methods, we conducted a non-

parametric Kruskal-Wallis test (𝛼=0.05) with a Bonferroni

correction (𝛼=0.0125) to determine if there were any

statistically significant differences in MMST across the three

planning durations. No statistically significant differences were

found in the MMST across planning durations for our

clustering allocator, 𝜒2(2) = 0.79, 𝑝 = 0.67; the naïve

allocator, 𝜒2(2) = 0.00, 𝑝 = 1.00; and the random allocator,

𝜒2(2) = 6.48, 𝑝 = 0.039. However, a statistically significant

difference existed for the memetic allocator, 𝜒2(2) =
35.4, 𝑝 < 0.0001. A post-hoc Dunn’s test (𝛼=0.05) with a

Bonferroni correction (𝛼=0.0167) showed that for the memetic

allocator a statistically significant difference existed between

the MMST of 1 ms and 10 ms, 𝑍(81) = 5.26, 𝑝 < 0.0001, and

1 ms and 100 ms, 𝑍(81) = 5.77, 𝑝 < 0.0001, but not between

10 ms and 100 ms 𝑍(81) = 0.73, 𝑝 = 0.233. Therefore,

providing more than 10 ms of planning time does not result in

any additional benefit in reducing the MMST for any allocator.

This analysis validates that all four methods could plan in real-

time as their performance was maximized with only 10 ms of

planning time and that 10 ms was sufficient for the

experimental comparisons in the paper.

H. ALTERNATIVE MULTIROBOT PERSON SEARCH SYSTEMS FOR

EXPERIMENT #2

 In the paper, we compare the mean success rate of our aware

2-MRPSS with strong coordination with respect to two

alternatives methods: 1) a segmented approach (unaware with

no coordination), and 2) a sequential approach (aware with

weak coordination). Below, we detail the implementation of

both alternatives.

Fig. H1. Flow chart of the unaware approach.

1) Alternative Approach #1: Segmented Approach

The segmented approach is based on the method in [14],

where an environment is segmented into an area for each robot

to search. Although the robots are unaware of each other and

Distribute the Environment Among the Robots

Search Query

Team Plan (𝑇𝑃)

Generate a Set of Actions for Each Robot

Determine the Order to Perform the Actions

 7

do not coordinate, this approach prevents redundant actions

between the robots while minimizing travel time. We have

integrated this with our two-stage approach, Fig. H1.

The first step is to distribute the environment among the

robots. This is achieved by determining the total number of

cells in the environment, Γ, using the grid representation of the

regions from the local search method presented in Part B above.

In [14], the environment was an open field and was therefore

easily divided into rectangles of equal size for each robot. As

our environment has walls between regions, we use an ad-hoc

technique to generate a unique segmentation of each scenario

environment that assigns an area to each robot such that the

maximum travel time between any pair of regions in an area is

minimized. The ad-hoc technique first assigns an ordering to all

cells in the environment and then sequentially assigns each

robot a contiguous set of cells from that ordering. The number

of cells assigned to each robot was selected to be as close to

uniform as possible using the following procedure. Let 𝑣 be the

maximum number of cells each robot can search in a uniformly

distributed workload and κ be the cells that remain unsearched:

 𝑣 +
𝜅

𝐵
=

Γ

𝐵
, 𝑣 ∈ ℤ, 𝜅 ∈ ℤ, 0 ≤

𝜅

𝐵
< 1. (H1)

Then, the first 𝜅 robots have 𝑣 + 1 cells and the rest have 𝑣

cells. The second step is to generate a set of actions for each

robot by solving the CMPMKP in Section IV.D of the paper to

generate 𝑈𝐴 for a single robot team, e.g. 𝐵 = 1, in an

environment containing only the assigned cells. Finally, to

generate a search plan for each robot we determine the order to

perform the actions by solving 𝑇𝑆𝑃2 for each robot in each time

period. The culmination of the robot search plans is the team

plan executed by the team.

2) Alternative Approach #2: Sequential Approach

The sequential approach is based on the approach presented

in [17], where each robot plans in a sequence while considering

the actions of the robots that have already generated their

plans. This sequential approach prevents redundant actions

between the robots. The approach is also combined with our

two-stage approach, Fig. H2.

Fig. H2. Flow chart of the weakly coordinated approach.

 For the sequential approach, we start by considering the first

robot and generate a set of actions for a single robot by

solving the CMPMKP in Section IV.D of the paper for a team

of 𝐵 = 1 robot. Then, to generate a search plan for this robot,

we determine the order to perform the actions by solving 𝑇𝑆𝑃2

in each time period. Each subsequent robot generates its plan

similarly to the first, however it updates the edge reward as in

Eq. (9) of the paper, which are used to solve the CMPMKP, to

account for the actions performed by robots which had already

planned. To achieve this, the edge rewards are updated as

follows:

 𝑊 (𝐸𝑡(𝑎𝑖,𝜔
∗)

𝑖) = − ∑ 𝑃 (⋃ 𝜃
𝑧,𝑖

𝐴𝐴
𝑖,𝜔′Ω

𝜔′=1)𝑍
𝑧=1 (H2)

 + ∑ 𝑃 (⋃ 𝜃
𝑧,𝑖

𝐴𝐴
𝑖,𝜔′

𝜔′∈[1,Ω]\𝜔)𝑍
𝑧=1 + ∑ 𝑃 (𝜃

𝑧,𝑖

𝑃𝐴𝑖,𝜔)𝑍
𝑧=1 .

𝐴𝐴𝑖,𝜔′ is a set containing actions 𝑈𝐴𝑖,𝜔′ planned by the current

robot and actions 𝑃𝐴𝑖,𝜔′ planned by other robots. As such, the

team search time 𝑡𝑞(𝑎𝑖,𝜔
∗) in 𝐴𝐴𝑖,𝜔′ is equal to the sum of the

team search times 𝑡(𝑎𝑖,𝜔
∗) in 𝑈𝐴𝑖,𝜔′ and 𝑞(𝑎𝑖,𝜔

∗) in 𝑃𝐴𝑖,𝜔′:

 𝑡𝑞(𝑎𝑖,𝜔
∗) = 𝑡(𝑎𝑖,𝜔

∗) + 𝑞(𝑎𝑖,𝜔
∗). (H3)

Once each robot has generated a search plan using the

modified rewards, Eq. (H3), the resulting set of search plans

form the team plan and are executed by the robots.

Search Query

Team Plan (𝑇𝑃)

 Determine the Order to Perform the Actions
 If all robots have a plan

If all

robots
do not

have a plan

Generate a Set of Actions for a Single Robot

